ITER Relevance: ELM – Simulating Plasma Gun

David Ruzic, Robert Stubbers, Travis Gray and Ben Masters

University of Illinois at Urbana Champaign

Overview

- Need for a ELM-Simulating Plasma Gun
- Facilities in Other Countries
- ESP-Gun at Illinois
 - Helicon, Pre-ionization Source Plasma
 - Conical Theta Pinch
 - Pulse Forming Network (PFN)
 - Pulses Merged into an ELM
- Data from Phase I
- Scale-up Possible

Motivation

- Why study ELMs?
 - Limiting heat flux for divertor surfaces
 - Largest cause of divertor erosion and impurity production
 - How effective is "vapor / plasma shielding" h
- ELM Plasma Material Interactions
 - Test bed for candidate divertor materials
 - Material survivability / erosion / melt layers
 - Surface effects
 - Are there different redeposition rates for mixed materials?
 - Changes in surface morphology and composition?

Type-I ELM Characteristics

- ELMs emanate from the LCFS
- Higher n_e and T_e at PFC
- An ELM is a series of plasma bursts
 - Each burst is 50 μs
 - Envelope (the ELM) lasts ~1 ms

- To the probe ELMs appear as series of spikes rather than a discrete event as on D_α
- Experimental evidence on several machines^{1,2}
- High heat flux onto the divertor surface

¹C. E. Bush, et al., "ELM Physics in NSTX – Onset and Characteristics", NSTX Research Forum, November 28-30, 2001. Reprinted from ALPS 2003 Meeting, Oakbrook IL.

²D. Rudakov, "Far SOL and Near-Wall Plasma Studies in DIII-D," ALPS Meeting November 2003, Oakbrook, IL.

D-IIID data showing ELM structure

Plasma Guns in Russia

Neither device has the time signature and field of an ELM

QSPA

Mk-200UG

University of Illinois at Urbana-Champaign

- Heat load (MJ/m²)
 - Pulse duration (ms) 0.1-0.6
- Plasma stream φ (cm)
- Magnetic field (T)
- lon impact energy (keV) <0.1
- Electron temp. (eV)
- Plasma density (m⁻³)

0.5-2 0.2-1

-0.6 0.04-0.06

6-10

0.5 - 1.2

1.5

100-200

 $(2-5)x10^{21}$

5

<10

< 1022

ESP-gun at Illinois

- RF pre-ionization source
- ECR magnets for down stream field
- Conical, theta coil
 ~ 5º taper

Can provide proper time behavior and B field on target

ILLINOIS

Target Area

ESP-gun Diagram

Conical Cross-Section similar to FRC formation / translation

Magnet Field Topology

~ 1000 G on target steady state now, can go higher

Voltage and Current of Pulse Train

Density and Temperature at Target

Coil fired in opposite polarity

Plasma Pulse Train Behavior

- During upswing of the voltage
 - Higher density and temperatures seen
 - B_{coil} aligned with B_{ext}
 - This should form an FRC since induced current in plasma is opposite guide field.
- During downswing of the voltage
 - Lower density and temperatures seen
 - B_{coil} reversed with respect to B_{ext}
 - No FRC formation possible

Design Goals and Achievements-to-date

 Comparison of anticipated parameters to NSTX (short term) and ITER (long term) for Type-I ELMs

ITER	NSTX	UIUC (proposed)	UIUC (present)
$\sim 10 \text{ MJ/m}^2$	$< 1 \text{ MJ/m}^2$	1 MJ/m^2	$10 \text{ kJ} / \text{m}^2$
~1-10 Hz	10-20 Hz	single shot	single shot
~0.1-1 ms	~1 ms	~ 0.5 ms	~1 ms
~10-100	~10 kHz	~ 10 kHz	10 kHz
kHz			
1-2.5 keV	100 eV	100 eV	25 eV
$\sim 10^{19} \mathrm{m}^{-3}$	$\sim 10^{19} \mathrm{m}^{-3}$	$\sim 10^{19} \mathrm{m}^{-3}$	$\sim 10^{18} \text{ m}^{-3}$
~1-5 T	~0.5 T	0.4 T	0.1 T
	~10 MJ/m ² ~1-10 Hz ~0.1-1 ms ~10-100 kHz 1-2.5 keV ~10 ¹⁹ m ⁻³	$\sim 10 \text{ MJ/m}^2$ $< 1 \text{ MJ/m}^2$ $\sim 1-10 \text{ Hz}$ $10-20 \text{ Hz}$ $\sim 0.1-1 \text{ ms}$ $\sim 1 \text{ ms}$ $\sim 10-100$ $\sim 10 \text{ kHz}$ $\sim 10-100 \text{ kHz}$ $\sim 10^{19} \text{ m}^{-3}$ $\sim 10^{19} \text{ m}^{-3}$	$\sim 10 \text{ MJ/m}^2$ < 1 MJ/m ² single shot $\sim 1.10 \text{ Hz}$ 10-20 Hz single shot $\sim 0.1\text{-}1 \text{ ms}$ $\sim 1 \text{ ms}$ $\sim 0.5 \text{ ms}$ $\sim 10\text{-}100$ $\sim 10 \text{ kHz}$ $\sim 10 \text{ kHz}$ kHz $\sim 1.2.5 \text{ keV}$ 100 eV $\sim 10^{19} \text{ m}^{-3}$ $\sim 10^{19} \text{ m}^{-3}$ $\sim 10^{19} \text{ m}^{-3}$

These results, energy input = 0.6875 kJ

For Phase II, 250.0 kJ available --- 300+ times more energy

Phase II Upgrades

- Much more power from 250 kJ capacitor bank which has lower inductance capacitors
- **Higher field** from higher current through magnets (could go to pulsed configuration if needed)

ILLINOIS

PFC meeting, Princeton NJ, May 2005

Benefit to US PFC Program

- Adds capabilities (field on target, time length and structure of ELMS) not present internationally
- Domestic experiment directed by US program, directly relevant to ITER tasks
- Compliments Steady-State Plasma exposure device – PISCES
- Compliments Electron-Beam High Heat Flux experiment – Sandia Albuquerque
- Provides experimental test-bed for HEIGHTS package – Argonne National Laboratory

Other Illinois Activities

- Ion surface interaction fundamental data especially at high temperatures and for liquid metals
- Retention, recycling and plasma interactions with flowing liquid metals
- MD and other modeling of basic PMI issues

